Discrete Logarithms in GF(P) Using the Number Field Sieve
نویسنده
چکیده
Recently, several algorithms using number field sieves have been given to factor a number n in heuristic expected time Ln[1/3; c], where Ln[v; c] = exp{(c + o(1))(log n) (log log n)}, for n → ∞. In this paper we present an algorithm to solve the discrete logarithm problem for GF (p) with heuristic expected running time Lp[1/3; 3 ]. For numbers of a special form, there is an asymptotically slower but more practical version of the algorithm.
منابع مشابه
Faster Individual Discrete Logarithms with the Qpa and Nfs Variants
Computing discrete logarithms in finite fields is a main concern in cryptography. The best algorithms known are the Number Field Sieve and its variants (special, high-degree, tower) in large and medium characteristic fields (e.g. GF(p2), GF(p12)); the Function Field Sieve and the Quasi Polynomialtime Algorithm in small characteristic finite fields (e.g. GF(36·509)). The last step of this family...
متن کاملAccelerating Iterative SpMV for Discrete Logarithm Problem using GPUs
In the context of cryptanalysis, computing discrete logarithms in large cyclic groups using index-calculus-based methods, such as the number field sieve or the function field sieve, requires solving large sparse systems of linear equations modulo the group order. Most of the fast algorithms used to solve such systems — e.g., the conjugate gradient or the Lanczos and Wiedemann algorithms — itera...
متن کاملA construction of 3-dimensional lattice sieve for number field sieve over F_{p^n}
The security of pairing-based cryptography is based on the hardness of solving the discrete logarithm problem (DLP) over extension field GF(p) of characteristic p and degree n. Joux et al. proposed an asymptotically fastest algorithm for solving DLP over GF(p) (JLSV06-NFS) as the extension of the number field sieve over prime field GF(p) (JL03-NFS). The lattice sieve is often used for a largesc...
متن کاملThe Number Field Sieve in the Medium Prime Case
In this paper, we study several variations of the number field sieve to compute discrete logarithms in finite fields of the form Fpn , with p a medium to large prime. We show that when n is not too large, this yields a Lpn(1/3) algorithm with efficiency similar to that of the regular number field sieve over prime fields. This approach complements the recent results of Joux and Lercier on the fu...
متن کاملComputing Discrete Logarithms with the General Number Field Sieve
The diiculty in solving the discrete logarithm problem is of extreme cryptographic importance since it is widely used in signature schemes, message encryption, key exchange, authentication and so on ((15], 17], 21], 29] etc.). The General Number Field Sieve (GNFS) is the asymptotically fastest known method to compute discrete logs mod p 18]. With the rst implementation of the GNFS for discrete ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 6 شماره
صفحات -
تاریخ انتشار 1993